3.10.43 \(\int \frac {a+i a \tan (e+f x)}{(c-i c \tan (e+f x))^3} \, dx\) [943]

Optimal. Leaf size=25 \[ -\frac {i a}{3 f (c-i c \tan (e+f x))^3} \]

[Out]

-1/3*I*a/f/(c-I*c*tan(f*x+e))^3

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {3603, 3568, 32} \begin {gather*} -\frac {i a}{3 f (c-i c \tan (e+f x))^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])/(c - I*c*Tan[e + f*x])^3,x]

[Out]

((-1/3*I)*a)/(f*(c - I*c*Tan[e + f*x])^3)

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 3568

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[1/(a^(m - 2)*b
*f), Subst[Int[(a - x)^(m/2 - 1)*(a + x)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x
] && EqQ[a^2 + b^2, 0] && IntegerQ[m/2]

Rule 3603

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Sec[e + f*x]^(2*m)*(c + d*Tan[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0] && IntegerQ[m] &&  !(IGtQ[n, 0] && (LtQ[m, 0] || GtQ[m, n]))

Rubi steps

\begin {align*} \int \frac {a+i a \tan (e+f x)}{(c-i c \tan (e+f x))^3} \, dx &=(a c) \int \frac {\sec ^2(e+f x)}{(c-i c \tan (e+f x))^4} \, dx\\ &=\frac {(i a) \text {Subst}\left (\int \frac {1}{(c+x)^4} \, dx,x,-i c \tan (e+f x)\right )}{f}\\ &=-\frac {i a}{3 f (c-i c \tan (e+f x))^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(56\) vs. \(2(25)=50\).
time = 0.36, size = 56, normalized size = 2.24 \begin {gather*} \frac {a (3+4 \cos (2 (e+f x))-2 i \sin (2 (e+f x))) (-i \cos (4 (e+f x))+\sin (4 (e+f x)))}{24 c^3 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])/(c - I*c*Tan[e + f*x])^3,x]

[Out]

(a*(3 + 4*Cos[2*(e + f*x)] - (2*I)*Sin[2*(e + f*x)])*((-I)*Cos[4*(e + f*x)] + Sin[4*(e + f*x)]))/(24*c^3*f)

________________________________________________________________________________________

Maple [A]
time = 0.18, size = 21, normalized size = 0.84

method result size
derivativedivides \(-\frac {a}{3 f \,c^{3} \left (\tan \left (f x +e \right )+i\right )^{3}}\) \(21\)
default \(-\frac {a}{3 f \,c^{3} \left (\tan \left (f x +e \right )+i\right )^{3}}\) \(21\)
risch \(-\frac {i a \,{\mathrm e}^{6 i \left (f x +e \right )}}{24 c^{3} f}-\frac {i a \,{\mathrm e}^{4 i \left (f x +e \right )}}{8 c^{3} f}-\frac {i a \,{\mathrm e}^{2 i \left (f x +e \right )}}{8 c^{3} f}\) \(59\)
norman \(\frac {\frac {a \tan \left (f x +e \right )}{c f}+\frac {i a \left (\tan ^{2}\left (f x +e \right )\right )}{c f}-\frac {i a}{3 c f}-\frac {a \left (\tan ^{3}\left (f x +e \right )\right )}{3 c f}}{c^{2} \left (1+\tan ^{2}\left (f x +e \right )\right )^{3}}\) \(77\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))/(c-I*c*tan(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

-1/3/f*a/c^3/(tan(f*x+e)+I)^3

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))/(c-I*c*tan(f*x+e))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 48 vs. \(2 (20) = 40\).
time = 1.03, size = 48, normalized size = 1.92 \begin {gather*} \frac {-i \, a e^{\left (6 i \, f x + 6 i \, e\right )} - 3 i \, a e^{\left (4 i \, f x + 4 i \, e\right )} - 3 i \, a e^{\left (2 i \, f x + 2 i \, e\right )}}{24 \, c^{3} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))/(c-I*c*tan(f*x+e))^3,x, algorithm="fricas")

[Out]

1/24*(-I*a*e^(6*I*f*x + 6*I*e) - 3*I*a*e^(4*I*f*x + 4*I*e) - 3*I*a*e^(2*I*f*x + 2*I*e))/(c^3*f)

________________________________________________________________________________________

Sympy [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 129 vs. \(2 (20) = 40\).
time = 0.18, size = 129, normalized size = 5.16 \begin {gather*} \begin {cases} \frac {- 64 i a c^{6} f^{2} e^{6 i e} e^{6 i f x} - 192 i a c^{6} f^{2} e^{4 i e} e^{4 i f x} - 192 i a c^{6} f^{2} e^{2 i e} e^{2 i f x}}{1536 c^{9} f^{3}} & \text {for}\: c^{9} f^{3} \neq 0 \\\frac {x \left (a e^{6 i e} + 2 a e^{4 i e} + a e^{2 i e}\right )}{4 c^{3}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))/(c-I*c*tan(f*x+e))**3,x)

[Out]

Piecewise(((-64*I*a*c**6*f**2*exp(6*I*e)*exp(6*I*f*x) - 192*I*a*c**6*f**2*exp(4*I*e)*exp(4*I*f*x) - 192*I*a*c*
*6*f**2*exp(2*I*e)*exp(2*I*f*x))/(1536*c**9*f**3), Ne(c**9*f**3, 0)), (x*(a*exp(6*I*e) + 2*a*exp(4*I*e) + a*ex
p(2*I*e))/(4*c**3), True))

________________________________________________________________________________________

Giac [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 96 vs. \(2 (20) = 40\).
time = 0.68, size = 96, normalized size = 3.84 \begin {gather*} -\frac {2 \, {\left (3 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} + 6 i \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 10 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 6 i \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 3 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{3 \, c^{3} f {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + i\right )}^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))/(c-I*c*tan(f*x+e))^3,x, algorithm="giac")

[Out]

-2/3*(3*a*tan(1/2*f*x + 1/2*e)^5 + 6*I*a*tan(1/2*f*x + 1/2*e)^4 - 10*a*tan(1/2*f*x + 1/2*e)^3 - 6*I*a*tan(1/2*
f*x + 1/2*e)^2 + 3*a*tan(1/2*f*x + 1/2*e))/(c^3*f*(tan(1/2*f*x + 1/2*e) + I)^6)

________________________________________________________________________________________

Mupad [B]
time = 4.64, size = 20, normalized size = 0.80 \begin {gather*} -\frac {a}{3\,c^3\,f\,{\left (\mathrm {tan}\left (e+f\,x\right )+1{}\mathrm {i}\right )}^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)/(c - c*tan(e + f*x)*1i)^3,x)

[Out]

-a/(3*c^3*f*(tan(e + f*x) + 1i)^3)

________________________________________________________________________________________